Data reengineering extends the life of existing systems by standardizing data definitions and facilitating source code simplification. It can also provide an accurate data model for use as a starting point in data modeling and database technology migration and as a preparation step for reverse engineering.
Data processing occurs when data is collected and translated into usable information. Usually performed by a data scientist or team of data scientists, it is important for data processing to be done correctly as not to negatively affect the end product, or data output.
Data Architecture “includes specifications used to describe existing state, define data requirements, guide data integration, and control data assets as put forth in a data strategy.” Data Architecture bridges business strategy and technical execution, and according to our 2017 Trends in Data Architecture Report
Data analysis is defined as a process of cleaning, transforming, and modeling data to discover useful information for business decision-making. The purpose of Data Analysis is to extract useful information from data and taking the decision based upon the data analysis.
Data migration is the process of moving data from one location to another, one format to another, or one application to another. Generally, this is the result of introducing a new system or location for the data. The business driver is usually an application migration or consolidation in which legacy systems are replaced or augmented by new applications that will share the same dataset. These days, data migrations are often started as firms move from on-premises infrastructure and applications to cloud-based storage and applications to optimize or transform their company.